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Quantal Information Entropies for Atoms
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The polynomials occurring in the wave functions of hydrogenic excited states
are found to present difficulties for a straightforward analytical approach to the
study of associated information entropies. A method is suggested to deal with
them. It is then applied to calculate the information entropy for the Jacobi
polynomial. A model calculation is presented to examine the effect of screening
on the entropy sum. It is seen that the sum does not depend on the choice
of screening.

1. INTRODUCTION

A rigorous mathematical treatment of the theory of information (Shan-

non, 1949) first appeared with the birth of cybernetics, the science of control

and automation of dynamical processes. Currently, information-theoretic
approaches are widely used to study the properties of complex microscopic

systems (Angulo et al., 1993; Antolin et al., 1994, 1997; Macia et al., 1994;

Nagy and Parr, 1996). Some studies on the foundation of quantum mechanics

have been based on similar procedures (Kadomstev, 1994).

An information measure closely related to the concept of entropy in

thermodynamics plays a role in atomic theories and is defined by (Shan-
non, 1994)

S v 5 2 # v ( e ) ln v ( e ) d e (1)

The quantal entropy S v measures the lack of information about the probability
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distribution v ( e ) in e space. Problems in quantum mechanics are formulated

either in the coordinate (r) space or in momentum ( p) space, depending on

which is more convenient for the problem under consideration. Thus from
(1) we can write

S r 5 2 # r (r) ln r (r) dr (2)

and

S g 5 2 # g ( p) ln g ( p) dp (3)

for the position and momentum space entropies with

r (r) 5 | C (
-
r ) | 2 and g ( p) 5 | C (

-
p ) | 2 (4)

Here C (
-

p ) stands for the Fourier transform of C (
-
r ), the r-space eigenfunction

of a central potential. The conjugate expressions in (2) and (3) allowed

Bialynicki-Birula and Mycielski (1975) to derive a new and stronger version
of the Heisenberg uncertainity relation:

S r 1 S g $ D(1 1 ln p ) (5)

where D corresponds to the dimensionality of the space for motion of the

system. The information sum in (5) is often called the BBM inequality.

YaÂnÄ ez et al. (1994) studied (2) and (3) for the D-dimensional hydrogen

atom for arbitrary values of n and l, the principal and angular momentum

quantum numbers, respectively. They found simple results for the ground
states, n 5 l 1 1, of a spectral series (constant l and varying n). But inordinate

complications were encountered in treating the cases for excited states. The

reason for this may be attributed to the fact that the ground-state hydrogenic

wavefunctions consist of a single term, while the excited states involve

polynomials. The logarithm of these polynomials presents difficulties in

evaluating the entropy integral. One of our objectives in this work is to
elucidate this point and derive a straightforward calculational procedure for

S r and S g for hydrogenic excited states. We shall work in three spatial

dimensions. Our other aim is to examine the effect of screening on the entropy

sum (5), the BBM inequality, and thus gain some physical insight about the

internal structure of S v .

We devote Section 2 to evaluate the entropy integrals (2) and (3) for
the 2s hydrogenic state. The calculational procedure will serve as a guide

for dealing with other hydrogenic states characterized by associated Laguerre

and Gegenbauer polynomials. It is important to note that evaluation of physical

entropies ultimately reduces to calculation of the entropy integral En for
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classical orthogonal polynomials, and in this context evaluation of En for the

Jacobi polynomial P a , b
n (x) is an open problem (YaÂnÄ ez et al., 1994). In Section

3 we construct an exact analytical expression for En for the Jacobi polynomial
and make some comments on the result. In Section 4 we investigate the

effect of screening on S r and S g by using the HultheÂn potential (HultheÂn,

1942) as a model for the screened Coulomb interaction.

2. INFORMATION ENTROPIES FOR HYDROGENIC
EXCITED STATES

The wavefunction for the ground state of the s spectral series or hydro-

genic state is given by

C 1s(
-
r ) 5

1

! p
e 2 r (6)

We shall use Hartree atomic units throughout this work. The quantity S r for

this wavefunction (6) can be evaluated by using the standard integral

#
`

0

xn e 2 ax dx 5
G (n 1 1)

an 1 1 (7)

For similar calculations involving ground states of the p, d, f, . . . ,

spectral series one can proceed by using different derivatives of the integral

(Gradshteyn and Ryzhik, 1965)

#
`

0

e 2 m x ln x dx 5
1

m
(C 1 ln m ) (8)

with respect to m and finally setting m 5 1. The angular integrals for higher

l values have been given by YaÂnÄ ezet al. (1994). For ground states the calulation
of S g is also equally straightforward. In the following we show that this is

not true even for the hydrogenic 2s state.

The 2s wavefunction is given by

C 2s(
-
r) 5

1

4 ! 2 p
(2 2 r)e 2 r/2 (9)

and

C 2s(
-

p ) 5
16

p
1 2 4k2

(1 1 4k2)3 (10)

For (9) the position-space entropy S r can be written as

S r 5 5 ln 2 1 ln p 1 6 2 1±8 I3 (11)
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involving a nontrivial integral

I3 5 #
`

0

r2 (r 2 2)2 e 2 r ln(r 2 2)2 dr (12)

To evaluate I3 we introduce

ln(r 2 2)2 5 lim
e ® 0

-
- e

(r 2 2)2 e (13)

and make a change of variable by substituting

y 5 r 2 2 (14)

This gives

I3 5
1

e2 lim
e ® 0

-
- e

[I4( e ) 1 I5( e )] (15)

where

I4( e ) 5 #
`

0

e 2 y y2 1 2 e ( y 1 2)2 dy (16)

and

I5( e ) 5 #
0

2 2

e 2 y y2 1 2 e ( y 1 2)2 dy (17)

The result for I4( e ) can be expressed in terms of the gamma function, while
(17) needs separate consideration. For the latter we make a further change

of variable,

y 5 2x 2 2 (18)

and get

I5( e ) 5 25 1 2 e e2 #
1

0

e 2 2x x2 (1 2 x)2 1 2 e dx (19)

The integral in (19) can be written in terms of confluent hypergeometric

functions by using

1F1[a, c; x] 5
G (c)

G (a) G (c 2 a) #
1

0

e xt t a 2 1 (1 2 t)c 2 a 2 1 dt (20)



Quantal Information Entropies for Atoms 1671

From all these considerations we finally obtain

S r 5 5 ln 2 1 ln p 1 6

2
1

e2 F 2 14 g 1
79

3
1 1 4 ln 2

15
2

47

225 2 1F1[3, 6; 2 2] G
2

16

e2 o
n

G (3 1 n)

G (6 1 n)

xn

n!
[ c (6 1 n) 2 c (6)] (21)

where c (x) stands for the logarithmic derivative of the gamma function. In

writing (21), we have also used

-
- c

1F1[a, c; z] 5 2 o
`

j 5 1

(a)j

(c)j

z j

j! o
j

n 5 1

1

c 1 n 2 1
(22)

as given by Slater (1960) with (a)j the Pochchammer symbol.

The momentum-space entropy integral S g the present case (10) is

given by

S g 5 2
322

p F 2ln
16

p #
`

0

(1 2 4k2)2

(1 1 4k2)6 k2 dk

1 #
`

0

(1 2 4k2)2

(1 1 4k2)6 ln
(1 2 4k2)2

(1 1 4k2)6 k2 dk G (23)

As in the treatment of S r , the first integral in (23) is quite simple and can

be evaluated analytically. Using (13), the second integral can be written in

terms of the hypergeometric 2F1[ ? ] functions. The final expression for S g is

found to be

S g 5 4 ln 2 1 2 ln p 2
59

10
2

631 3 32

315 p
2F1[6, 3; 11/2; 1/2]

2
1

5 ! 2 p o
n

G (3/2 1 n) G ( 2 3/2 1 n)

G ( 2 7/2 1 n)

xn

n!
[ c ( 2 3/2 1 n) 2 c ( 2 3/2)]

2
3

160 ! p o
n

G (6 1 n) G (3 1 n)

G (11/2 1 n)

xn

n!
[ c (3 1 n) 2 c (3)] (24)

The associated Laguerre polynomials that enter into the hydrogenic wavefunc-

tions can always be written in the form

(r 2 a)(r 2 b)(r 2 c) . . . (25)

where a, b, c, etc., are the roots of the polynomial. Using the representation
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(25), one can follow our prescription for the 2s state to obtain S r and S g for

any excited state. The same approach can be followed to calculate the entropy

for any orthogonal polynomial. In the next section we demonstrate this with
reference to the Jacobi polynomial, which has a host of connections with

other members of the family.

3. ENTROPY FOR JACOBI POLYNOMIAL

If qn(x) with n 5 0, l, 2, . . . are polynomials orthogonal with respect

to the weight function w(x) on the interval [ 2 1, 1 1], the corresponding

information entropies are given by (YaÂnÄ ez et al., 1994)

En 5 2 # q2
n(x) ln q2

n(x)w(x) dx (26)

As already stated, the polynomial of interest is the generalized Jacobi

polynomial P a , b
n (x). The weight function for P a , b

n (x) is

w(x) 5 (1 2 x) a (1 1 x) b (27)

The series and product representations for the Jacobi polynomial are given

by (Abramowitz and Stegun, 1970)

P a , b
n (x) 5 2 2 n o

n

m 5 0

( 2 1)n 2 m Cm(1 2 x)n 2 m(1 1 x)m (28)

and

P a , b
n (x) 5 kn &

n

i 5 0
(x 2 xi) (29)

where xi stands for the ith root of P a , b
n (x) 5 0. It should be noted that xi is

a real number lying between 2 1 and 1 1. The quantities Cn and kn have

the values

Cn 5 1 n 1 a
m 2 1 n 1 b

n 2 m 2 (30)

and

kn 5 2 2 n 1 2n 1 a 1 b
n 2 (31)

with 1 pr 2 the binomial coefficients. The orthonormality relation for the Jacobi
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polynomial is expressed as

# P a , b
n (x) P a , b

n8 (x)w(x) dx 5 hn8 d nn8 (32)

with

hn 5
2 a 1 b 1 1 G (n 1 a 1 1) G (n 1 b 1 1)

n! (2n 1 a 1 b 1 1) G (n 1 a 1 b 1 1)
, if a . 2 1, b . 2 1

(33)

Combining the results (26) and (33), we have

En 5 2 F 2hn ln kn 1 o
n

i 5 1

Ji G (34)

where

Ji 5 2 2 2n o
n

m 5 0
o
n

m8 5 0

( 2 1)m 1 m8CmCm8

3 #
1

2 1

(1 2 x)2n 1 a 2 m 2 m8 (1 1 x)m 1 m8 1 b ln(x 2 xi)
2 dx (35)

To evaluate the integral in (35) analytically, we split it into two parts such that

Ji 5 21 2 2n o
n

m 5 0
o
n

m8 5 0

( 2 1)m 1 m8 Cm Cm8 [I1 1 I2] (36)

where

I1 5 lim
e ® 0

-
- e #

xi

2 1

(1 2 x) p(1 1 x) q(xi 2 x) e dx (37)

and

I2 5 lim
e ® 0

-
- e #

1

xi

(1 2 x) p(1 1 x) q(xi 2 x) e dx (38)

with p 5 2n 1 a 2 m 2 m8 and q 5 m 1 m8 1 b .

Using the transformation xi 2 x 5 y in (37), we write

I1 5 lim
e ® 0

-
- e #

u

0

( y 1 v) p(u 2 y) qy e dx (39)
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with u 5 1 1 xi and v 5 1 2 xi. Fortunately, the result of the integral in (39)

is given (Gradshteyn and Ryzhik, 1965) in terms of a Gauss hypergeometric

function and we have

I1 5 lim
e ® 0

-
- e

(1 2 xi)
p(1 1 xi)

q B(q 1 1, e 1 1)

2F1 F 2 p, 1 1 e ; 2 1 q 1 e ; 2
1 1 xi

1 2 xi G (40)

In order to make the 2F1[ ? ] function convergent everywhere, we use the

transformation

2F1 [a, b; c; z] 5 (1 2 z) 2 a
2F1 [a, c 2 b; c; z/ (z 2 1)] (41)

to obtain

I1 5 lim
e ® 0

-
- e

[2p (1 1 xi)
q 1 1 1 e B(q 1 1, e 1 1) (42)

2F1[ 2 p, 1 1 q; 2 1 q 1 e ; (1 1 xi)/2]]

in which the argument of the 2F1[ ? ] function (1 1 xi)/2 is always less than

1. The following argument will be useful to perform the derivative in (42):

lim
e ® 0

-
- e

(1 1 xi)
q 1 1 1 e 5 ln(1 1 xi) (43)

lim
e ® 0

-
- e

B(q 1 1, 1 1 e ) 5
1

q 1 1
[ c (1) 2 c (q 1 1)] (44)

and

lim
e ® 0

-
- e

2F1 [ 2 p, 1 1 q; 2 1 q 1 e ; (1 1 xi)/2] 5

2 o
`

r 5 1

( 2 p)r (q 1 1)r[(1 1 xi)/2]r

r! (q 1 2)r
o
r

s 5 1

1

q 1 s 1 1
(45)

The finite summation over s has resulted from the differentiation of the 2F1[ ? ]
function (Slater, 1960) with respect to e . The final result for I1 is obtained

in the form

I1 5
2p(1 1 xi)

q 1 1

q 1 1 1 (ln(1 1 xi) 1 c (1) 2 c (q 1 2))

3 2 F1[ 2 p, 1 1 q; 2 1 q 1 e (1 1 xi)/2]
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2 o
`

r 5 1

( 2 p) r(q 1 1)r[(1 1 xi)/2]r

r! (q 1 2)r
o
r

s 5 1

1

q 1 s 1 1 2 (46)

A similar result for I2 can be constructed which is the same as the expression

(46) with p and q interchanged and xi replaced by 2 xi.

4. EFFECT OF CORRELATION ON THE INFORMATION
ENTROPY

The Yukawa potential is often used as a model for screened and cutoff

Coulomb interactions. But the eigenvalue for this interaction cannot be solved

analytically. We have therefore chosen to work with the two-parameter (V0,

a) HultheÂn potential given by (HultheÂn, 1942)

V (r) 5 2 V0
e 2 r/a

1 2 e 2 r/a where V0a . 0 (47)

This potential behaves like a Coulomb potential Vc 5 2 V0a/r at small values

of r, whereas for large values of r it decreases exponentially so that its

capacity for bound states is smaller than that of Vc. Alternatively, (47) will

exhibit the same behavior as a ® ` . If we work in atomic units, the correct

Coulomb limit will be obtained as a ® ` and V0a ® 1. Regarding a as a
screening parameter, the HultheÂn potential has been widely used as a judicious

model for the screened interaction. The Schro
È
dinger equation for (47) is

partially solvable in that it can be solved in terms of Gauss hypergeometric

function for the s wave only (Flu
È
gge, 1974). Laha et al. (1988), studied the

Hamiltonian hierarchy problem for the potential in (47) in the context of
supersymmetric quantum mechanics (Witten, 1981) and found that the associ-

ated `supersymmetric partners’ belong to the Eckart class of potentials. Inter-

estingly, the partner potentials could simulate the effect of the centrifugal

barrier fairly accurately at least for a few lower partial waves. In the following

we make use of wavefunctions given in Flu
È
gge (1974) and Laha et al. (1988)

to study the effect of screening on the position and momentum informa-
tion entropies.

The normalized ground-state (1s) coordinate-space wavefunction for the

HultheÂn potential can be written as

C 1s(
-
r ) 5

1

! p 1 a 1

a 2
3/2

e 2 ( a 1/a)r (48)
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with

a 1 5 V0 a2 2 1±2 (49)

The momentum-space wavefunction corresponding to (48) is given by

C 1s(
-

p ) 5
a 1(2 a 1a)3/2

p ( a 2
1 1 a2p2)2 (50)

From (2), (3), (48), and (50) we get

SH
r 5 3 1 ln p 2 3 ln( a 1/a) (51)

and

SH
g 5 2 ln p 1 5 ln 2 1 3 ln( a 1/a) 2 10/3 (52)

Here we have used the superscript H to indicate that S r and S g given in (51)

and (52) refer to the HultheÂn potential. The same convention will also be

used for the Coulomb potential. The results for the Coulomb potential for

(51) and (52) are given by

SC
r 5 3 1 ln p (53)

and

SC
g 5 2 ln p 1 5 ln 2 2 10/3 (54)

In the unscreening limit a 1/a ® 1, one thus easily recovers the results in

(53) and (54) from those in (51) and (52). Further, the equality of SH
r 1 SH

g

with SC
r 1 SC

g implies that the entropy sum is independent of screening

although it influences the values of S r and S g .

Using the supersymmetry-inspired radial ladder operators, Laha et al.
(1988) obtained the 2p radial wave function for the HultheÂn potential from

the exact 2s function given in Flu
È
gge (1974). The normalized 2p wavefunction

is given by

C 2p(
-
r ) 5

1

21/2 F f (V0, a)

a G
3/2

e 2 ( a 2/a)r(1 2 e 2 r/a) Y1m( V r) (55)

with

a 2 5
V0 a2

2
2 1 (56)

[ f (V0 , a)] 2 3 5 (V0 a2 2 2) 2 3 2 2 (V0 a2 2 1) 2 3 1 (V0 a2) 2 3 (57)
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and Y1m( V r) a scalar spherical harmonic. The corresponding momentum-space

wavefunction is

C 2p(
-

p ) 5 2
2ip(2 a 2 1 1)a4

! p 1 f (V0, a))

a 2
3/2

3
( a 2

2 1 a2p2) 1 [( a 2 1 1)2 1 a2p2]

[( a 2
2 1 a2p2)[( a 2 1 1)2 1 a2p2]]2 Y1m ( V p) (58)

From (57) we find

lim
a ® `

[ f (V0, a)] 2 3 5 12(V0 a2) 2 5 (59)

Interestingly, the results in (59) can be used to verify that (56) and (58) give

the exact Coulomb functions in the unscreening limit. This serves as a check

for the correctness of the results obtained within the framework of supersym-

metric quantum mechanics.

From (2) and (56) we can write the 2p position-space information
entropy as

S r 5 2
1

2 F f (V0, a)

a G
3

1 F ln 1 12 F f (V0, a)

a G
3

2 1 I3 G
3 #

`

0

e 2 ( a 2/a)r (1 2 e 2 r/a)r2 dr 2
2 a 2

a

3 #
`

0

e 2 (2 a 2/a)r (1 2 e 2 r/a)r2 dr

1 2 #
`

0

e 2 ( a 2/a)r (1 2 e 2 r/a)2 ln(1 2 e 2 r/a)r2 dr 2 (60)

where

I3 5 # | Y1m ( V ) | 2 ln | Y1m ( V ) | 2 d V (61)

The result for I3 has been given by YaÂnÄ ez et al. (1994). The first and second
integrals in (60) are standard and can be obtained as

2 F a

f (V0, a) G
3

and 2
a3

Y0

-
- a F 1

f (V0, a) G
3

The evaluation of the third integral, however, requires a little care. Denoting

it by I2, we work this out as follows.



1678 Bhattacharya, Talukdar, Roy, and Ghosh

Introducing the change of variables x 5 e 2 r/a, we rewrite I2 as

I2 5 a3 lim
m ® 0

lim
e ® 0

- 2

- m 2

-
- e #

1

0

x d 2 1 (1 2 x)2 1 e dx (62)

where d 5 2 a 2 1 m . The definite integral in (62) is the beta function B( d ,
3 1 e ). Expressing B( d , 3 1 e ) in terms of gamma function, we carry out

the derivatives and finally take the limits to get

I2 5
a3

2 a 2( a 2 1 1)(2 a 2 1 1)

3 (([ c 1(2 a 2) 2 c 1(2 a 2 1 3)] 1 [ c (2 a 2) 2 c (2 a 2 1 3)]2)

3 [ c (3) 2 c (2 a 2 1 3)] 2 2[ c (2 a 2)

2 c (2 a 2 1 3)] c 1(2 a 2 1 3) 2 c 2(2 a 2 1 3)) (63)

where c n (x) 5 (dn/dxn) c (x). We can thus write

SH
r 5 2 F f (V0, a)

a G
3

1 F ln 1 12 F f (V0, a)3

a 2 1 I3 G F a

f (V0, a) G
3

1
a a2

V0

-
- a F 1

f (V0, a) G
3

1 I2 2 (64)

We find

lim
a ® `

lim
V0a ® 1

SH
r 5 3 ln 2 1 ln 3 1 2 g 1 5/6 2 I3 (65)

which is indeed the correct expression for Coulomb 2p position-space infor-

mation entropy.
From (3) and (58) the momentum-space entropy corresponding to (64)

is obtained as

SH
g 5 2 C 1 (ln C 1 I3) #

`

0

(g 1 2a2p2)2p4 dp

( a 2
2 1 a2p2)4 [( a 2 1 1)2 1 a2p2]4

1 2 #
`

0

(g 1 2a2p2)2p4 ln(g 1 2a2p2) dp

( a 2
2 1 a2p2)4 [( a 2 1 1)2 1 a2p2]4

2 4 #
`

0

(g 1 2a2p2)2p4 ln[ ( a 2 1 1)2 1 a2p2] dp

( a 2
2 1 a2p2)4 [ ( a 2 1 1)2 1 a2p2]4

2 4 #
`

0

(g 1 2a2p2)2p4 ln ( a 2
2 1 a2p2) dp

( a 2
2 1 a2p 2)4 [( a 2 1 1)2 1 a2p2]4 (66)
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1 2 #
`

0

(g 1 2a2p2)2p4 ln pdp

( a 2
2 1 a2p 2)4 [( a 2 1 1)2 1 a2p2]4 2

with

C 5
4a8

p
(2 a 2 1 1)2 F f(V0, a)

a G
3

(67)

and g 5 a 2
2 1 ( a 2 1 1)2. The integrals in (66) can be evaluated by the appro-

priate use of results given in Gradshteyn and Ryzhik (1965). Hence we

can write

lim
a ® `

lim
V0a ® 1

SH
g 5 ln p 1 ln 3 2 43/10 2 I3 (68)

YaÂnÄ ez et al. (1994) analytically calculated the results for the position and
momentum information entropies of the hydrogen atom in D spatial dimen-

sions and used them to analyze the decrement or increment of S r and S g as

the information increases or decreases. Here we have dealt with a screened

Coulomb potential and found that the information sum is independent of the

screening parameter. On very general grounds one knows that in a screened
hydrogenic system an electron experiences a more repulsive environment

than in a pure Coulomb field. A screened Coulomb wavefunction is thus

likely to be pushed apart leading to a relatively diffused probability density

in position space. Consequently, SH
r should be greater than SC

r . Our result in

(51) clearly indicates this since for all real situations a 1/a , 1. Understandably,

the opposite will happen for SH
g . After some algebraic simplification the same

can be demonstrated for (64).
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